Stochastic Lagrangian Relaxation in Power Scheduling of a Hydro-Thermal System under Uncertainty
نویسنده
چکیده
We consider a power generation system comprising thermal units and pumped hydro storage plants, and introduce a model for its weekly cost-optimal operation. Due to the uncertainty of the load, the mathematical model represents a dynamic (multi-stage) stochastic program. The model involves a large number of mixed-integer (stochastic) decisions but its constraints are loosely coupled across operating power units. The coupling structure is used to design a stochastic Lagrangian relaxation method, which leads to a decomposition into stochastic single unit subproblems. The stochastic subproblems have deterministic counterparts, which makes it easy to develop algorithms for the stochastic problems. In this paper, a descent method for stochastic storage problems and an extension of dynamic programming towards stochastic programs are developed. The solution of the dual problem provides multipliers leading to preferred schedules (binary primal variables). The crossover heuristics evaluates the economic dispatch problems corresponding to a sequence of such preferred schedules. The combination of the restriction on dual preferred schedules (Lagrangian reduction) with the evaluation of a sequence (facet search) leads to an eÆcient method. The numerical results on realistic data of a German utility justify this approach.
منابع مشابه
Stochastic Lagrangian Relaxation Applied to Power Scheduling in a Hydro-Thermal System under Uncertainty
A dynamic (multi-stage) stochastic programming model for the weekly cost-optimal generation of electric power in a hydro-thermal generation system under uncertain demand (or load) is developed. The model involves a large number of mixed-integer (stochastic) decision variables and constraints linking time periods and operating power units. A stochastic Lagrangian relaxation scheme is designed by...
متن کاملStochastic Short-Term Hydro-Thermal Scheduling Based on Mixed Integer Programming with Volatile Wind Power Generation
This study addresses a stochastic structure for generation companies (GenCoʼs) that participate in hydro-thermal self-scheduling with a wind power plant on short-term scheduling for simultaneous reserve energy and energy market. In stochastic scheduling of HTSS with a wind power plant, in addition to various types of uncertainties such as energy price, spinning /non-spinning reserve prices, unc...
متن کاملA Two-Stage Planning Model for Power Scheduling in a Hydro-Thermal System Under Uncertainty
A two-stage stochastic programming model for the shortor mid-term cost-optimal electric power production planning is developed. We consider the power generation in a hydro-thermal generation system under uncertainty in demand (or load) and prices for fuel and delivery contracts. The model involves a large number of mixed-integer (stochastic) decision variables and constraints linking time perio...
متن کاملA Two-Stage Stochastic Program for Unit Commitment Under Uncertainty in a Hydro-Thermal Power System
We develop a two-stage stochastic programming model with integer first-stage and mixed-integer recourse for solving the unit commitment problem in power generation in the presence of uncertainty of load profiles. The solution methodology rests on a novel scenario decomposition method for stochastic integer programming. This method combines Lagrangian relaxation of non-anticipativity constraints...
متن کاملA SIMPLIFIED LAGRANGIAN MULTIPLIER APPROACH FOR FIXED HEAD SHORT-TERM HYDROTHERMAL SCHEDULING
This paper presents a simplifiedlagrangian multiplier based algorithm to solve the fixed head hydrothermalscheduling problem. In fixed head hydrothermal scheduling problem, waterdischarge rate is modeled as quadratic function of hydropower generation andfuel cost is modeled as quadratic function of thermal power generation. Thepower output of each hydro unit varies with the rate of water discha...
متن کامل